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Abstract. This paper analyzes a new social media phenomenon in which
users are lying about not being bots or about real news being fake news.
Twitter data were collected throughout the 2019 Canadian federal elec-
tion cycle, and we investigated the use of the #FakeNews and #NotABot
hashtags. Twitter users connected the #FakeNews hashtag more often
to mainstream news sources and reporters rather than actual fake news
sites, often as a way to discredit certain reporters or viewpoints. We also
found that users of the #NotABot hashtag were no more likely to be
human than other users participating in political discourse in our data
set. Bots that attempt to pass as human have been reportedly used to
amplify misinformation campaigns in the past. This new type of online
defensive strategy shows how these campaigns continue to evolve and
illustrates how they may be run in the future.
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1 Introduction

Since the 2016 U.S. presidential election, there has been a great deal of inter-
national concern that Russia and other countries are trying to increase political
division and spread disinformation in Western democratic nations [2]. Several
studies over the last few years have characterized these misinformation cam-
paigns and analyzed their potential e↵ects on political discourse [2, 9]. Many
others have focused on improved detection of bots on social media platforms [3]
or improved automatic detection of potentially false or misleading news [8, 11].
As detection has improved, we have seen these campaigns continue to evolve.
Over the last few years, we have witnessed a new type of phenomenon emerge:
lying about lying as a way to provide cover for these campaigns. In this paper,
we will characterize the users and targets of the #FakeNews and #NotABot
hashtags as they were used during the 2019 Canadian election.

Over the course of the Canadian election cycle, journalists reported on various
misinformation campaigns they discovered. In particular, the National Observer
described the response to the #TrudeauMustGo hashtag with the amplifying
#NotABot hashtag. The #NotABot wave was used to boost the #Trudeau-
MustGo message and produced a large spike in both hashtags in July 2019.
This event raised concerns over a new wave of disinformation, as the journalists
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feared that the #NotABot hashtag was potentially being used in an inauthentic
manner and itself was a form of disinformation [12]. Additionally, as the term
“fake news” has caught on in recent years as a way to expose potentially false or
misleading news stories, both malicious actors and regular people have started
co-opting the term as a way to discredit true news stories and political oppo-
nents [14]. Users that are falsely claiming that they are #NotABot or that a
real news story is #FakeNews are using these claims as a type of defense, which
illustrates a potential playbook for future misinformation campaigns.

2 Related Work

Social cybersecurity is an emerging interdisciplinary field that focuses on how
information and network maneuvers on social media can change human behavior
and opinions. This field will a↵ect the national security and democratic founda-
tions of our own country as well as of other open societies [4, 6, 7]. Adversaries
use various maneuvers to manipulate social network structure by connecting or
breaking up groups. In addition, they manipulate the information on networks by
spreading falsehoods and polarizing information or by promoting certain groups
and individuals. Bots are used to increase the e↵ectiveness of campaigns’ mes-
sages in the hope of reaching a larger or more connected audience [7].

Previous research has been conducted in the wake of foreign interference in
the 2016 U.S. presidential election to characterize these campaigns and attempt
to measure their impacts [4, 2, 9]. Other studies have focused on improved de-
tection of bots on social media platforms [3] or improved automatic detection
of potentially false or misleading news [8, 11]. While anecdotally polarization
in the US has increased, it is di�cult to quantify the precise impact of Rus-
sian disinformation campaigns on the 2016 election. Bail et al. found that those
most likely to interact with the Russian Internet Research Agency’s bot accounts
were already highly engaged and polarized users and that it did not significantly
change their levels of polarization [2]. Grinberg et al. found that older and more
conservative users were more likely to be engaged with fake news but that the
overall engagement level is low and highly concentrated [9]. However, it is still
unclear how these campaigns impacted voting and other o✏ine behaviors, which
is the largest concern for democratic nations.

Consequently, Canada spent the three years since 2016 planning on how to
safeguard their 2019 elections [13]. Wang et al. developed a method to identify
“polluting groups” in the Canadian election Twitter space, finding that those
users they flagged were four times more likely to be suspended over the course of
the election cycle [15]. In addition, we have started to see an online reaction to
misinformation with users calling out stories or URLs as “fake news”. Ribeiro et
al., however, found that users were more likely to slap the “fake news” label onto
something they disagreed with politically rather than actually calling out false
content [14]. Some users during the Canadian election cycle also started falsely
claiming that they are #NotABot when amplifying potential misinformation
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campaigns as a way to provide cover for those campaigns [12]. In this paper, we
investigate these new defenses of misinformation.

3 Methods

3.1 Data

We analyzed a Twitter data set collected between 20 July 2019 and 6 November
2019 composed of 16,784,400 tweets written by 1,303,761 accounts using 137,419
hashtags. The data were collected by streaming tweets matching a set of search
terms that were supplemented as the political environment developed. The final
list of terms is shown in Table 1. This data set is not necessarily representative
of all Twitter activity surrounding the 2019 Canadian election.

2019 Canadian Election Twitter Search Terms
#TrudeauMustGo, TeamTrudeau, trudeau, #Election2019, #elxn43, #choosefor-
ward, #onpoli, #ItsOurVote, #lpc, #ndp, #cpc, #gpc, #NotAbot, #cdnpoli,
#ButtsMustGo, #LavScam, #LiberalsMustGo, BlocQuebecois, #blocqc, cccr2019,
#NoTMX, #TMX, #TransMountain, scheer, dougford, fordcutshurt, fordisfailing

Table 1: The list of search terms used to gather the Twitter data set on the 2019
Canadian election.

Two groups of hashtags were identified for further study. The first group con-
sists of hashtags used to call out supposed misinformation. This group contains
all hashtags that included both the words “fake” and “news”. The second group
consists of hashtags used to allege that an account is not run by a bot. For this
group, any hashtag containing both the words “not” and “bot” were considered.
Table 2 lists the most popular hashtags in these two groups.

Fake-News Hashtags Not-A-Bot Hashtags
Hashtag Number of Tweets Hashtag Number of Tweets

#fakenews 9,741 #notabot 45,605
#fakenewsmedia 3,287 #iamnotabot 921
#fakenewscbc 70 #imnotabot 142
#fakenewsandy 62 #teamnotabot 62
#cbcisfakenews 59 #stillnotabot 53

Table 2: The most used hashtags included in the fake-news and not-a-bot groups.

3.2 Bot Identification

We augmented our Twitter data with additional information on the type of ac-
count and on the probability that an account was run by a bot. We made use of
the bot probability scores computed on our data by the tier-one BotHunter algo-
rithm developed by Beskow and Carley [3]. This system was created by training
a random forest regressor on labeled data. The BotHunter algorithm takes into
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consideration both account and tweet information to determine the probabil-
ity that a user is a bot. Attributes that the algorithm considers include user
attributes (like screen name length and number of tweets), network attributes
(including number of friends and followers), the content of a tweet, and general
timing of tweets (including account age and the average number of tweets per
day). The output of the algorithm is a probability value, not a classification. We
used various probability thresholds throughout our work, ranging from 0.6 to 0.8.
A lower threshold would include more accounts, but it might also have included
some accounts that actually belong to humans. Higher thresholds would have
been more conservative but may not have captured all the bots in the network.

Many of the accounts predicted by the BotHunter algorithm as likely be-
ing bots may be accounts associated with various legitimate organizational ac-
counts, such as those of news sources and government agencies. These accounts
often exhibit behavior similar to that of bots, such as sending a high volume of
tweets. Therefore, we used Huang and Carley’s classification system to remove
these kinds of accounts. This algorithm is a hierarchical self-attention neural
network for Twitter user role classification, and it outperforms many standard
baselines. The algorithm classifies each user into one of seven classes: news me-
dia, news reporter, government o�cial, celebrity, company, sports, and normal.
[10]. Throughout this study, when seeking to detect bots at di↵erent BotHunter
thresholds, we subsequently disregarded any detected bots that were not also
deemed as normal accounts by Huang and Carley’s algorithm.

3.3 Detecting Targets of #FakeNews Accusations

Each tweet using a fake-news hashtag needed to be assigned a likely target
to evaluate who was being called out as spreading misinformation. For each
tweet, the set of targets was assigned as the union of (a) the users mentioned
in the tweet who are potential targets, (b) the author of the original tweet
if the given tweet is a reply to a tweet made by a potential target, (c) the
Web sites linked to in the tweet if the sites belonged to a potential target, and
(d) the specific targets of fake-news hashtags used in the tweet (if any). Links
in tweets were associated with targets by un-shortening URLs and manually
tying their domains to potential targets. Similarly, some hashtags were associated
with potential targets (e.g., the hashtag “#fakenewscbc” was noted as targeting
the Canadian Broadcasting Corporation). For this process, a potential target
was defined as including political organizations, entities purporting to be news
agencies, politicians, and individuals claiming to be reporters.

This method for detecting the likely targets of a tweet using a fake-news
hashtag is limited. For example, there are cases in which a Twitter user may
reply to a user of the same political inclination and use a fake-news hashtag to
call out something that is not mentioned in the conversation [14]. Our method
is not designed to detect such cases.
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4 Results and Analysis

4.1 Network Structure

(a) Users of fake-news hashtags. (b) Users of not-a-bot hashtags.

Fig. 1: The reciprocal communication networks for the users of fake-news hash-
tags and the users of not-a-bot hashtags. Each has been divided into two groups
colored in red and blue using CONCOR. Accounts with a bot score higher than
0.7 that were not filtered out by Huang’s algorithm have been colored yellow.

We analyzed the structure of the reciprocal communication networks for each
of the two groups of hashtags we examined. The reciprocal communication net-
work is formed by tying two users together if they both have a communication
tie to the other (such as user A mentioning user B and user B retweeting user A).
Upon visual inspection, both of the reciprocal communication networks appeared
to contain two large groups of users. Figure 1a shows the reciprocal communi-
cation network for the users of fake-news hashtags, and Figure 1b shows the
equivalent network for the users of not-a-bot hashtags.

To evaluate the di↵erence between these clusters, we isolated the groups
using CONCOR [5], calculated the number of times every hashtag was used in
each group, and normalized the count by the total number of hashtag uses in the
group. Of particular interest were the usage frequencies for hashtags that demon-
strate clear partisan stances, such as “#trudeaumustgo” and “#scheerlies”. Ta-
ble 3 shows the usage frequencies for five liberal-leaning and five conservative-
leaning hashtags across the two groups in each of the two networks studied. For
each of the hashtags, it is clear that one group uses conservative-leaning hash-
tags more frequently than the other and that the other group uses liberal-leaning
hashtags more frequently than the first group. It therefore seems that both the
reciprocal communication networks for fake-news hashtag users and not-a-bot
hashtag users are split on a partisan basis.
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Usage by #FakeNews Users Usage by #NotABot Users
Red (%) Blue (%) Red (%) Blue (%)

C
on

se
rv
at
iv
e #trudeaumustgo 20.93 0.81 21.67 1.52

#scheer4pm 1.86 0.03 1.93 0.05
#trudeauworstpm 1.34 0.05 1.34 0.08
#liberalsmustgo 1.19 0.02 1.25 0.03

#trudeaumustresign 1.17 0.03 1.19 0.07

L
ib
er
al

#istandwithtrudeau 0.08 0.64 0.11 0.65
#teamtrudeau 0.27 0.61 0.29 0.66
#scheerlies 0.02 0.45 0.02 0.48

#scheerdisaster 0.02 0.42 0.02 0.45
#neverscheer 0.02 0.40 0.03 0.35

Table 3: The frequency of use for popular liberal-leaning and conservative-leaning
hashtags in the CONCOR groups for the reciprocal communication networks
of fake-news hashtag users and not-a-bot hashtag users. Usage frequency was
calculated as the number of tweets using a hashtag divided by the total number
of hashtag uses in that CONCOR group.

4.2 #FakeNews Analysis

For the fake-news hashtags, we were most interested in seeing which types of
news agencies or people are targeted the most. We also wanted to find out which
types of targets Twitter bots are most interested in calling out as misinformation.
Figure 2 shows a bar plot of the number of tweets that were associated with an
entity for the ten most-targeted entities. An added bar shows the number of
times all other entities were targeted. Each bar also shows the portion of those
tweets that came from bots detected using three di↵erent thresholds: 0.6, 0.7,
and 0.8. Note that, as was mentioned previously, after using BotHunter to detect
bots at a given threshold, we disregarded bots that were not deemed as normal
by Huang’s classification algorithm [10].

As can be seen in Figure 2, the most targeted entity was the Canadian Broad-
casting Corporation (CBC). The second-most targeted entity was Amy McPher-
son, who Hu↵Post describes as a freelance journalist based in Ontario [1]. The
plot shows the most commonly targeted entities to mainly be important Cana-
dian news sources like the CBC, CTV News, the Toronto Star, and Global News
as well as prominent Canadian politicians like Andrew Scheer, Justin Trudeau,
Catherine McKenna, and Chrystia Freeland.

4.3 #NotABot Analysis

We sought to determine whether the proportion of bots using not-a-bot hash-
tags was di↵erent from the proportion of bots in the overall Canadian data. As
shown in Figure 3, the di↵erence in the percentage of bots is negligible between
the population of not-a-bot hashtag users and the rest of the population when
looking at just the BotHunter scores. We ran a two-sample proportion test of
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Fig. 2: A plot showing how many times an entity was targeted using a fake-news
hashtag by normal users and bots detected with various BotHunter thresholds.

equality using bot probability thresholds of 0.6, 0.7, and 0.8 (shown in Table 4).
None of the tests had statistically significant p-values, indicating that we would
not reject the null hypothesis that these two proportions are equal. After remov-
ing “o�cial” bots using Huang’s algorithm [10], we found that the proportion
of bots was higher in the #NotABot group than in the general Canadian user
group. These di↵erences were statistically significant with p-values near zero.

All Bots All Non-O�cial Bots
Bot Threshold #NotABot Canada P-Value #NotABot Canada P-Value

� 0.60 16.21% 15.97% 0.545 14.38% 9.59% 2.2e-16
� 0.70 5.10% 5.25% 0.540 4.38% 3.00% 1.925e-14
� 0.80 1.47% 1.70% 0.104 1.22% 0.87% 0.00043

Table 4: The percentage of users in the #NotABot group and the rest of the
Canadian users that are over the three di↵erent bot score thresholds. The p-value
is associated with the 2-sample proportion test for equality.

We additionally ran a Mann-Whitney U test, which is a non-parametric test
for the null hypothesis that the distribution of two populations is the same. The
test resulted in a highly significant p-value, which indicates that the distribution
of bot scores is statistically significantly di↵erent between users of not-a-bot
hashtags and the rest of the Canadian data. Upon closer inspection, the di↵erence
appears small, as the di↵erence in the mean bot score for the two groups is less
than 2%. However, these results are in line with the higher percentage of non-
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o�cial bots found in the #NotABot group overall. Table 5 shows the summary
statistics for the bot scores in the #NotABot group and the other data.

Fig. 3: A bar plot showing the percentage of users in the #NotABot dataset and
the general Canadian dataset that were detected as bots at various thresholds.

Minimum First Quartile Median Mean Third Quartile Maximum
#NotABot Users 2.66% 29.20% 42.74% 42.56% 55.01% 99.80%
Canadian Users 1.01% 27.00% 40.99% 41.20% 54.49% 100.00%

Table 5: The summary statistics for the bot scores in the #NotABot group and
the rest of the Canadian users.

5 Discussion

Overall, we found that large and established news agencies are the most as-
sociated with fake-news hashtags, indicating that they are frequently targeted
with accusations of spreading misinformation. Additionally, we find that using
not-a-bot hashtags is not a reliable signal for indicating that one is not, in fact,
a bot. After accounting for o�cial bots (government agencies, news reporters,
politicians etc.), the proportion of bots is higher in the population using not-a-
bot hashtags than in those that do not use those hashtags. Both the network
of fake-news hashtag users and the network of not-a-bot hashtag users show a
strong partisan divide in their members’ usage of other hashtags. In both of
these networks, many of these users are attempting to deceive others on what
is actually false news and on whether or not they are a bot. It is also clear
that accusations calling something fake news come from both liberal-leaning
and conservative-leaning groups of users.
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6 Conclusion & Future Work

Our work describes some new tactics being used by malicious actors hoping to
influence an election. Mainstream news organizations are being labeled as “fake
news” at higher rates than news sites that are either fake, satirical, or other-
wise not held to high journalistic standards. Additionally, during the Canadian
election, a Twitter user claiming not to be a bot was just as likely (if not more
likely) to be a bot as anyone else on the platform discussing Canadian politics.
Therefore, the #NotABot hashtag is not a good indicator for a user trying to
prove that they are a human. These results show that users claiming that they
are telling the truth on social media are just as likely to be lying as general users.

Future research will likely build on this initial set of hashtags to investigate
how lying about lying on social media may evolve over time and may be used
di↵erently in other countries. Malicious actors may continue building on these
techniques to discredit anyone who calls out their misinformation campaigns,
or these hashtags may be replaced by other hashtags or techniques in the fu-
ture. Discovering how these hashtags evolve is a challenging problem that itself
requires more study.

Additionally, these hashtags have been recently used in a variety of non-
political contexts, supposedly as a way to call out false news or to claim that the
user themselves is not a bot. Examining how these hashtags are used di↵erently
in various contexts could be helpful for understanding these phenomena. Perhaps
more importantly, a useful avenue for future research would be to investigate how
much of an impact these hashtags are having on human behavior and opinions. It
is not clear whether users on these platforms believe someone who makes a claim
of not being a bot. While our research shows that people using these hashtags
are often lying, the general public may not be aware of this.
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